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Abstract--The analytical solution of convective heat transfer from an isothermal complex surface in an 
unlimited space has been presented. The complex surface is represented by a horizontal ring of diameters 
D and d with hemispherical segment of diameter d in the centre. The shape of the complex surface was 
expressed by factor p = d/D. The presented solution has been verified experimentally on a set-up of 
diameter of 0.4 m and height of 0.5 m with surfaces of constant external diameter D = 0.06 m and various 
shape factor p = &round plate, 0.183, 0.233, 0.40, 0.483, 0.554, 0.650, 0.817 and l&-hemisphere. The 
tested flmd was glycerine. The comparison of theoretical and experimental results gives good agreement. 
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INTRODUCTION a 
A complex surface can be composed, for example: 
of vertical cylinder covered by hemisphere, vertical 
cylinder ended from the top and from the bottom by 
two hemispheres, vertical cylinder ended by two cones, 
round horizontal1 plate with hemispherical segment in 
the centre and so on (Fig. 1). These surfaces are often 
the heating surface in electronic devices (transistors, 
diodes, integrated circuits), building engineering 
(domes, cupolas, bowls), chemical engineering (tanks, 
containers, reactors, autoclaves), lighting industry 
(lanterns, beacons, lamps) or in meteorology. 
However, a search of the literature revealed scarce 
information on convective heat transfer from such 
complex surfaces. 

Fig. 1. Some examples of complex surfaces : (a) vertical 
cylinder-hemisphere, (b) hemisphere-vertical cylinder- 
hemisphere, (c) cone-vertical cylinder-cone, (d) horizontal 

ring-hemisphere. 

The research presented was aimed at making an 
attempt to apply a model of convective heat transfer 
in an unlimited. space from an isothermal complex 
surface represented for example by horizontal ring 
with hemisphere in the middle. This choice was caused 
by the fact that the components of such a complex 
surfaces ; horizontal ring and hemisphere have been 
studied and obtained results have been published 
recently [ 1, 21. 

round leading edge of the ring and flows concentric 
to the round edge of the hemisphere. The fluid flows 
then above the hemisphere and next the boundary 
layer transforms into buoyant plume over the centre 
point of the complex surface. This physical model is 
presented in Fig. 2. 

The heat flux from the whole surface Qc is composed 
of heat fluxes from the ring Qr and from the hemi- 
sphere Q,, : 

The considered surface was described by the shape 
factor p = d/D being a ratio of the sphere diameter d 
and the outer diameter of the ring D. 

MODEL OF CONVECTION FROM THE COMPLEX 

SURFACE 

For an isothermal surface (AT, = AT, = AT,,) and 
for A, = n(D2+d2)/4, A, = x(D’-d2)/4, A,, = nd2/2 
one has : 

The analysis of results of the visualisation studies 
gives an evidence that a boundary layer forms at a 

t Author to whom correspondence should be addressed. or 

d 

Q, = Qr+Q,, = a,A,AT,+cr,A,AT,, = a,A,AT,. 

(1) 

(D2-d’) +2a d2 
a, = a, 

(0’ +d2) h (D2+d2) 
(2) 
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NOMENCLATURE 

a = y/(c,p) thermal diffusivity 
A area 
CP 

specific heat at constant pressure of the 
fluid 

C = Nu/Ra’14 coefficient in Nusselt- 
Rayleigh relation equations (9), (10) 

d internal diameter of ring in complex 
surface 

D external diameter of ring and complex 
surface 

f function defined by equation (11) 
g gravitational acceleration 
h thickness of the slab in heat flux 

X coefficient of heat losses from heater 
equation (17). 

Greek letters 

; 
heat transfer coefficient 
coefficient of volumetric expansion 

Y angular downstream location 
6 thickness of boundary layer 
1 thermal conductivity 
V kinematic viscosity 

: 
shape factor of surface. 
function defined by equations (7), (8). 

measuring plate 
Z current of electric power of heater 
Nu = uD//z Nusselt number 
e heat thtx 
Ra = g/l ATD’/(va) Rayleigh number 
T temperature 
u voltage of electric power of heater 

Subscripts 
complex surface 

“h hemispherical segment 
r ring segment of surface 
0 end for ring and first for hemisphere 
loss losses. 

1 g 
TOO 

7 
Fig. 2. Physical model of convective heat transfer from com- 
plex surface represented by horizontal ring with hemisphere 

in the middle. 

Nu - -*)Nu + ‘* Nu 

c - (l+pZ) r (1+p2) h 
(3) 

where : Nu, = u,D/i, Nu, = a,D/1, Nu,, = a,D/L and 
p = d/D. 

The Nusselt numbers in natural convection heat 
transfer from a horizontal ring and a hemisphere are 
described by Nusselt-Rayleigh relations and these 
relations are known from previous studies [3] and [4] : 

Nu, = C, * Raf ” (for the ring) (4) 

Nub = Ch * Ra,f,‘4 (for the hemisphere). (5) 

The substitution of Nusselt-Rayleigh relations 
equations (4) and (5) into equation (3) in which the 

same characteristic linear dimension D is used, leads 
to relation for isothermal complex surface : 

Nu, = (‘.I+ +Qh)Ra”“ = QcRa’j4 (6) 

where : 

~ = (1 -PWr 
r (l+p*)-Ra"*' 

(8) 

The constants for the ring C, estimated in paper [3] 
is expressed by relation : 

c 
r 

= 1.151 ‘(1 -p7y 
(1 -py 

(1 _p7/3)Wp*/3 

+ $1 -p213) - A(1 -p3) - A(1 -p16’3) 

+ &(l -py - j&(1 -PI? 1 115 . (9) 

For the boundary case of the ring or of the complex 
surface i.e., round horizontal plate (JI = d/D = 0) the 
constant equation (9) in Nusselt-Rayleigh relation 
equation (4) is C, = 1.229. 

The second constant in relation equation (5), being 
connected with the spherical part of complex surface, 
can be calculated according to procedure described in 
paper [4] from relation : 
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0.5 

s 

R/2 

” = 0 -sin?,) 

cos y * dy 

Y0 ~(Y,Y~,&) 
(10) 

where : 

“a Yo9 60) 

(11) 

Equations (10) and (11) differ from the original 
solution for hemisphere [4] by assumption that 
coefficient of boundary layer shape (&S/ax -+ 0) can 
be neglected for complex surface. The convective fluid 
flow on separate hemisphere and hemisphere being 
the part of complex surface differs from each other. 
In the first case convective boundary layer thickness 
starts from 6 = 0 at y = 0. In the second case (complex 
surface-see Fig. 2), the boundary layer thickness 
starts on the hemispherical surface from the value 
6 = a0 at y = yo. The consequence of this is that the 
integration constant in original solution [4] being 
C, = 0 has now the form : 

2 * 6, 
c,= 7 

4 Ra - COS*‘~ y. 

( > 64~40~” 
(12) 

The value of angle yo, according to Fig. 2, can be 
expressed as : 

y. = arc@ [~olW+~o)l. (13) 

The final value of the boundary layer thickness on 
the ring (6,) is, according to the law of continuity, 
the same as the initial value of the boundary layer 
thickness on the hemispherical part of the complex 
surface (Fig. 2). The value of the boundary layer thick- 
ness above the diameter of d+ 2ao, calculated accord- 
ing to the procedure given in [3] is expressed by 
relation : 

2*?Io 3.971(1 -p”3)“4 -= 
d R&5$/3 

(1 -p*)‘i5[(l _p7/3)‘/4p2/3 

- &(l_p23/3)_ &(‘-p) 1 -‘y (14) 

By the substitution of relation (14) into equation 
(13) one can calculate the angle y. which is necessary 
to calculate the constant C,, from equations (10) and 
(11). 

The results of calculations of coefficients mD,, $, and 
@‘, for complex surface of chosen dimensions ex- 
pressed by the p = d/D ratio and for given values of 
Rayleigh numbers (Ra = lo’, 104, lo’, 106, 10’ and 
10’) are compared in Table 1 and are illustrated in 
Fig. 3 and Fig. 4. 

Introducing the value of the coefficient for the ring 

Table 1. The values of coefficients ar, (Dh and QG as a function of the shape factor of the complex surface p = d/D and 
Rayleigh number Ra 

P 

Ra 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

10’ 0.870 0.846 0.808 0.749 0.675 
lo4 0.775 0.754 0.719 0.667 0.602 
10S 0.691 0.672 0.641 0.595 0.536 
lo6 0.616 0.599 0.571 0.530 0.478 
10’ 0.549 0.534 0.509 0.473 0.426 
lo8 0.489 0.476 0.454 0.421 0.380 

lo3 0 0.006 0.028 0.069 0.126 
lo4 0 0.005 0.025 0.062 0.115 
lo5 0 0.005 0.023 0.056 0.104 
lo6 0 0.004 0.020 0.050 0.094 
10’ 0 0.004 0.018 0.045 0.085 
lo* 0 0.003 0.016 0.041 0.076 

10’ 0.870 0.852 0.835 0.818 0.802 
lo4 0.775 0.759 0.745 0.730 0.717 
lo5 0.691 0.677 0.664 0.651 0.641 
lo6 0.616 0.603 0.592 0.581 0.573 
10’ 0.549 0.538 0.527 0.518 0.511 
108 0.489 0.479 0.470 0.462 0.456 

Qr 
0.591 
0.526 
0.469 
0.418 
0.372 
0.332 

@h 
0.197 
0.182 
0.166 
0.151 
0.137 
0.123 

@C 
0.788 
0.708 
0.635 
0.569 
0.509 
0.455 

0.498 0.401 0.299 0.186 0 
0.444 0.357 0.266 0.166 0 
0.396 0.319 0.237 0.148 0 
0.353 0.284 0.211 0.132 0 
0.314 0.253 0.188 0.118 0 
0.280 0.225 0.168 0.105 0 

0.278 0.363 0.445 0.516 0.522 
0.258 0.341 0.424 0.497 0.522 
0.238 0.319 0.403 0.481 0.522 
0.219 0.297 0.383 0.468 0.522 
0.200 0.275 0.362 0.455 0.522 
0.182 0.253 0.340 0.441 0.522 

0.776 0.764 0.744 0.702 0.522 
0.703 0.699 0.691 0.663 0.522 
0.634 0.638 0.641 0.630 0.522 
0.572 0.581 0.594 0.600 0.522 
0.515 0.528 0.551 0.572 0.522 
0.462 0.479 0.508 0.545 0.522 
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Fig. 3. Dependence of cPr and mh on p and Ra for the hori- 
zontal ring with hemisphere in the middle 
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Fig. 4. Dependence of @c on p and Ra for the horizontal ring 
with hemisphere in the middle. 

surface C, and the value of the coefficient connected 
with the spherical segment of the complex surface C, 
into equation (4) one can obtain the solution in the 
form of correlation of coefficient C, as a function 
of Rayleigh number Ra and the shape factor of the 
complex surface p. 

EXPERIMENTAL APPARATUS AND PROCEDURE 

Experiments were made in distilled glycerol and 
water for the complex surfaces of constant external 
diameter of D = 0.06 m and of different shape factor 
p = 0.0 (plate), 0.183,0.223,0.40,0.483,0.554,0.650, 
0.817 and 1.00 (hemisphere). The complex surface was 
made from two copper sheets of the thickness 1 mm 

each by pressing. Experimentally the thickness 2 mm 
of complex surface allowed obtained in experimental 
procedure isothermal temperature of the wall T, was 
found. To measure this temperature three ther- 
mocouples were mounted between sheets of each 
tested complex surface. 

Experimental stand and procedure are similar to 
that used to measure convective heat transfer from a 
horizontal ring and hemisphere and are described in 
detail in works [3] and [4]. Schematic cross-section of 
the (testing equipment) apparatus used to carry out 
experimental investigations is shown in Fig. 5. The 
apparatus used in the experiment was a Plexiglas tank 
with a copper coil connected to a thermostat. The 
main dimensions of the tank were 0.4 m in diameter 
and 0.5 m in height. In the centre of the bottom, on a 
round horizontal heated plate, a glass tube held the 
complex surface (Fig. 5(c)). The tube had double walls 
(Fig. 5(a) and 5(b)) with vacuum between them to 
minimise heat losses QlO,,. 

The heat flux (Qin, = U-I) from the heating plate 
inside the glass tube, filled by the test fluid, was trans- 
ported by turbulent convection into copper complex 
surfaces. Then the heat flux from the investigated com- 
plex surfaces (Qout = U * I- Qloss) to the surrounding 
test fluid was transferred also by convection, but in 
this case by a laminar one. A slab plate used for 
measuring, by direct method, the heat flux Q for 

a) 

I a 

8 

B 
d 

Fig. 5. Schematic diagram of experimental equipment (a) the 
slab plate for measuring by independent (indirect) method 
the heat flux for boundary cases of complex surface (round 
horizontal plate and hemisphere), (b) position of complex 
surfaces with the use of dependent (direct) method of heat 
stream measuring, (c) cross-section of the apparatus used. 
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boundary cases of complex surface p = 1 and p = 0 
and to estimate the heat loss flux Qloss is illustrated in 
Fig. 5(a). Figure 5(b) with enlarged fragment of tested 
surfaces shows th.e indirect method of the heat flux 
Q = Qm, * x~oss estimation. The heat flux from complex 
surface to the tested fluid was measured with the use 
of two methods for the boundary cases only. These 
methods and obtained results were described [3] for 
round horizontal plate and [4] for the hemisphere 
investigations. In this paper the results obtained for 
all cases (0 < p < 1) but with the use the only indirect 
method were presented. In this method the heat flux 
was calculated from relation : 

Q = U.I.xloSS (15) 

where : U and Z alre voltage and current of heater and 
x,,, is the coefficient of global heat losses from the 
heater through the glass tube, bottom and support 
construction. 

The coefficient of heat losses was estimated with the 
use of the measuring slab plate according to formula : 

QloSS = U* I- (n/h) *(AT,) *(r&/4) (16) 

x~osl =VJ*Z--Q,oJW~I) (17) 

where : 1 is the conductivity at the mean temperature 
(T,, + T&/2 of the fluid inside the slab of measuring 
plate, h is the slab thickness and AT, = T,, - T,, is 
the difference oft he temperature of both copper plates 
of measuring slab plate (Fig. 5(a)). 

The convective part of the heat flux transferred 
through the slab could be neglected in our experiments 
because the distance between two copper round plates 
of the measuring plate calculated from equation (18) 
was h = 1.9 mm. For this value of the slab thickness 
and for all experimental runs the Rayleigh number 
values inside the slab were smaller than the value of 
critical Rayleigh number Rat, and this means that the 
whole heat flux is transferred by conduction only. 

g*/I*(T,, - T,,,,)*h3/(a*v) < Rat, = 1700. (18) 

The empirical correlation of calibration results (Fig. 
6), obtained for the two characteristic cases of the 

i i iiiiiii 
- 

Fig. 6. The results of calibration of experimental stand up 
reduced to found relations between heat loss coefficients xloss 
for a characteristic case of complex surface (round plate and 

hemisphere) and Rayleigh numbers. 

complex surface (p = &round plate) and p = l- 
hemisphere) have the forms 

X loss = 0.02248 * Ru’-‘~‘~ for p = 0 (round plate) 

(19) 

X lors = 0.02393 - Ra0.‘473 for p = 1 (hemisphere). 

(20) 

The general relation of calibration reads : 

X ,oss = (0.00045 * p +0.02248) * Ra(“~‘679-0.0206p) 

forO>p> 1. (21) 

For each complex surface described by shape factor 
p and for the experimental values of Rayleigh number 
the coefficient of heat losses xloS were estimated from 
equation (21). From the experimental values current 
and voltage of heating plate the heat fluxes Q were 
calculated from equation (15). 

From the difference of the temperature of complex 
surface and of the fluid in an undisturbed region the 
heat transfer coefficients LY = Q/(,4= .(Tw - T,)) and 
the next the Nusselt numbers Nu = CI * D/A were calcu- 
lated. 

EXPERIMENTAL RESULTS 

By using the least square method, the experimental 
points obtained for the tested surfaces with various 
shape factors p have been correlated by Nusselt-Ray- 
leigh relations for given values of coefficient C = Nu/ 
Rd and exponent n or for the constant value of 
exponent n = l/4 or n = l/5. 

The approximation of experimental results and 
mean square deviations 6’ have been presented below : 

p = 0 (round plate) 
Nu = 1.540R~‘.“~ (6’ = 0.997), 
Nu = 0.588Ra’j4 (6* = 0.808) 

or Nu = 1.109R~“~ (6* = 0.975) 

p = 0.183 
Nu = 2.263R~O.l~~ (a* = 0.973), 
Nu = 0.707R~“~ (6* = 0.626) 

or Nu = 1.318Ra’15 (6* = 0.898) 

p = 0.233 
Nu = 1.290R~~-‘~~ (6* = 0.974), 
Nu = 0.560R~“~ (a* = 0.852) 

or Nu = 1.060R~“~ (6* = 0.967) 

p = 0.4 
Nu = 1.224Ra0.‘s6 (S* = 0.986) 
Nu = 0.538R~“~ (a* = 0.870) 

or Nu = 1.024Ra”’ (a* = 0.980) 

p = 0.483 
Nu = 1.096Ra0-‘99 (S* = 0.999), 
Nu = 0.578R~“~ (6’ = 0.933) 

or Nu = 1.080Rd5 (a* = 0.999) 



p = 0.55 NU 
Nu = 0.732Ra0-228 (6’ = 0.995), 20 
NM = 0.554Ra’14 (6* = 0.986) 

or Nu = 1.038Ra”’ (a2 = 0.980) 10: 

p = 0.65 
Nu = 0.682Ra0228 (6’ = 0.999), 
Nu = 0.520Ra”4 (S2 = 0.990) 

or Nu = 0.970Ra”5 (b2 = 0.984) 

p = 0.817 
Nu = 0.581Rao2*’ (d2 = 0.977), 
Nu = 0.840Ra”4 (fi2 = 0.984) 

p = 1 (hemisphere) 
Nu = 0.443Ra0~258 (6* = 0.997), 
Nu = 0.490Ra”4 (6’ = 0.996) 

The experimental results presented in the form of 
average Nusselt numbers Nu vs. Rayleigh number Ra 10 
are shown in Fig. 7. The plot contains, as an example, 
the results obtained for glycerine only. The solid lines 5 
in Fig. 7 represent the theoretical solution equation I I I lllllll I I I llllll 

(6). lo4 105 lo6 Ra 

Some of the experimental points in Fig. 7 are 
pointed by letters. For these points in Fig. 9 the Nu 
visualisation results are also presented. 20 

In Fig. 8 the experimental results plotted in the form 
of average values of the coefficient C = Nu/Ra’14 vs p 10 
are compared with the analytical solution equation 
(6). The direct comparison is not possible because the 5 
analytical solution, obtained in the form of 
a’, = Nu/Ra’14, as one can see in Fig. 4 and Table 1 is 
a function of Rayleigh number. So the solid line in 

Nu 

Fig. 8 represents analytical solution averaged for the 
20 

range of performed experiments ( lo5 > Ra > 107). 10 
The experimental results, presented above, were cal- 
culated with the use of different values of exponents n 5 
varying from n = 0.156 to IZ L 0.282 but for com- 
parison with theoretical solution these results were 
approximated with the use of exponent II = l/4 (as in Nu 
theoretical solution). 20 

In Fig. 9 some results of visual studies of convective 
heat transfer have been presented. The analysis of 10 

stream line patterns was very useful for preparing 
the model of free convection phenomenon from the 5 

complex surfaces and for the explanation of deviations 
from the rules of proposed mechanism (p = 0.183 and 

104 105 Ra 

p = 0.817). 
Fig. 7. Experimental data (points) compared with theoretical 
results (solid lines) obtained for some complex surfaces and 
for glycerine. The letters describe some experimental points 
corresponding to the results of visual studies presented in 

Fig. 9. 

DISCUSSION OF THE OBTAINED RESULTS 

From the analysis of Fig. 7 and Fig. 8 it is obvious 
that the experimental results for the most of the com- 
plex surfaces tested, agree well with the proposed were the exceptions to this rule. Repeated experiments 
theoretical model of natural convection heat transfer for these surfaces also in water (not presented in this 
from horizontal ring with hemisphere in the middle as paper) [5] eliminate gross error and indicate that the 
an example of complex surface and with their ana- mechanism of this phenomenon in the proposed 
lytical solutions. Two cases of investigated surfaces, model is disturbed by additional effects. 
namely for the shape factors p = 0.183 and p = 0.8 17, The first singularity of intensification of heat trans- 
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I I lll/ll/ in which this conical dead space exists, the heat is 
transferred from the plate through this insulating 
fluid layer by conduction only. This effect is 
described by the authors in the work [7] ; 

-the small convexity may indicate a phenomenon 
similar to condensation, boiling or crystallisation 
nucleus. 

NU The second, more pronounced, divergence from the 
20 theory for p = 0.817 is caused by the effect of tur- 

bulence of cold fluid flowing concentric on the com- 
10 plex surface. This turbulence, in the form of the inlet 

5 
vortex ring, was indicated by the round recess between 
the round corner of the plate and the hemisphere. In 
this surface configuration the entry spin of the fluid 

lo4 lo5 lo6 Ra intensifies heat transfer on the whole hemisphere. This 
Fig. l-continued. explanation is confirmed by the exponent equal l/3 

which better approximate the experimental results, 
expressed in the form of Nusselt-Rayleigh relation, 
than the exponent of value l/4, which is correct for 
the laminar range. Similar intensification effect of con- 
vective heat transfer was observed by the authors for 

1 
C 

~~ 

a horizontal round heating plate screened by the cyl- 
indrical, vertical wall of the height of value 
H/D = 0.09 [S, 91. 

0.8 I- - 

0 CONCLUSION 
---- __._ ____ -_- --- --- 

0.6 z!e 
Ii- 

%9- c The proposed model of the phenomenon of con- 
-_ 0 0 

- - -- -_ __ -_ _o- -- vective heat transfer from the complex surface and the 
solution of this model exhibit a convergence with the 
results of experimental investigations of horizontal 
ring with hemisphere in the middle as an example of 
complex surface. This fact of agreement of theoretical 

0.2 
and experimental results may be the proof of veri- 

- 

fication of presented method. This method allows an 
estimation of the heat transfer coefficient from any 
complex surfaces, not only from presented in this 

OO 0.2 0.4 0.6 0.8 
P l 

paper (example surfaces in Fig. 1). 
The augmentation of heat transfer from horizontal 

Fig. 8. Comparison of the averaging, for the range of per- ring with hemisphere in the middle with shape factor 
formed experiment (lo5 B Rn > IO’), analytical solution p = 0.183 and p = 0.817 found out in this study may 
(solid line) with the experiments described by C = Nu/Ra’j4 

(points). 
take full advantage in electronics. The intensification 
for the p = 0.183 is about 19% in comparison with 
the round plate and for the p = 0.817 about 70% 
compared with a hemisphere. This effect can be used 
for example for cooling by natural convection of e.g. 
transistors, diodes, integrated circuits or the electronic 
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-local overheating of the fluid at surroundings of 
small diameter convexity of the flat horizontal sur- 
face-similar phenomenon was observed by the 
authors for convective heat transfer in the closed 
space [6] ; 

-elimination of the ‘dead’ space with motionless fluid 
in the middle of the plate by convexity. In the case 

fer for p = 0.183 may be caused by the fact that the devices. 

exponent n = l/4 in this cases is not as good for 
approximation of experimental points as n = l/5 or is Acknowledgement-This research was partly supported by 

accompanied by following possible effects for 
Scientific Research Grant of the Chemistry Faculty of 
Technical University of Gdansk under Theses no. BW 

example : 0117011070-071. -/~ 
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p = 0.183 
Fig. 9. Photographs of some experimental points according to notation by the letters in Fig. 7. The tested 
fluid was glycerine. Flow pattern marked by aluminium powder and illuminated by laser light-slit was 

detected by photo-camera. The exposure time was t = 8 s. 



Natural convection heat transfer from complex surface 1865 

p = 0.483 
Fig. 9-continued. 
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p = 0.65 
Fig. 9--continued. 
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p = 0.817 
Fig. 9-continued 
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